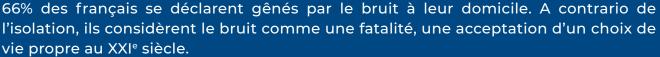


SOLUTIONS TECHNIQUES

ISOLATION ET CONFORT ACOUSTIQUE
MILIEU TRÈS HUMIDE
PROTECTION INCENDIE
PROTECTION SISMIQUE

SOMMAIRE


]<	ISOLATION ET CONFORT ACOUSTIQUE	4
-	Introduction	4
	A. Les solutions en cloisons et contre-cloisons	8
	▶ RESILIENDB	8
	► APPUI2DB	10
	▶ APPUISAD	12
	B. Les solutions en cloisons et plafonds	14
	▶ RESILIENDBH	14
	C. Les solutions en plafonds	16
	► CAVALIERDB	16
	► CAVALIERDBH	18
	▶ OMEGADB	20
	► OMEGADBH	22
	► SUPPORTDBH	24
	D. Les solutions pour les descentes d'eaux	26
	▶ RESILIENDB	26
	MILIEU TRÈS HUMIDE	28
	Introduction	28
	A. Les solutions en murs et plafonds	30
	Ossatures spéciales milieu humide	30
	PROTECTION INCENDIE	32
	Introduction	32
	A. Les solutions en cloisons	34
	▶ Rais et montants	34
	B. Les solutions en plafonds	36
	Fourrure 17/55 FEU REI30	36
	► Fourrure 17/55 FEU REI60	38
	▶ Fourrure 17/55 avec ossature longue portée OMNIFIX REI30	40
	▶ Fourrure 17/55 avec ossature longue portée OMNIFIX REI60	42
	PROTECTION SISMIQUE	44
	Introduction	44
	A. Les solutions en murs et plafonds	46
	▶ Rails, montants et fourrures	46

Introduction

Principe acoustique

Le bruit est un son indésirable qui nous produit une sensation d'inconfort et que nous subissons habituellement dans notre lieu d'habitation ou dans notre environnement de travail.

L'exposition prolongée à des sources de bruit peut générer fatigue, troubles du sommeil, stress, diminution du rendement au travail et, si le niveau est très élevé (au-delà de 90 dB), est susceptible de causer des dommages irréversibles à l'ouïe...

D'un point de vue physique, le bruit est un son complexe, formé de la combinaison de fréquences diverses. Selon leur nature, on peut classer les bruits que l'on perçoit en trois groupes majeurs :

Bruit aérien: Tout bruit transmis par l'air.

Il est transmis par les cloisonnements (cloisons, planchers, plafonds, etc...).

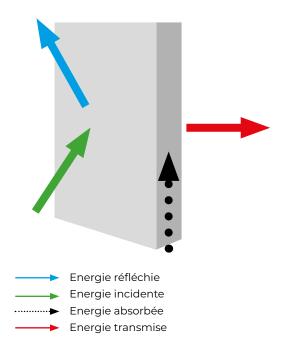
Des exemples de ce bruit sont la circulation, les travaux, les conversations, la radio, la télévision, etc...

Bruit de choc : Le bruit de choc est causé par un coup qui fait vibrer les éléments structurels. Des exemples de ce bruit sont la chute d'objets, un claquement de porte, le déplacement de personnes, de meubles que l'on traîne, etc...

Bruit de vibration : Le bruit de vibration est un bruit de caractère continu, généralement de basse fréquence. Des exemples de ce bruit sont ceux émis par des moteurs et des machines.

Propagation du bruit

Lorsque qu'un son se propage dans un milieu et rencontre un obstacle, plusieurs phénomènes peuvent survenir :


Réflexion : L'énergie qui arrive sur l'obstacle est renvoyée vers le milieu de propagation.

Diffraction : Ce phénomène de distorsion se produit lorsque la valeur de la longueur d'onde du son incident est de dimension similaire à l'ouverture dans un obstacle, le champ sonore incident se régénérant.

Absorption : L'énergie qui arrive sur l'obstacle n'est pas renvoyée vers le milieu de transmission mais elle se transforme en chaleur. La quantité d'énergie absorbée dépendra de la nature du matériau.

Transmission : L'énergie incidente franchit l'obstacle, revenant vers le milieu de transmission.

Dans la plupart des situations, ces phénomènes se produisent simultanément, tel qu'illustré sur la figure

Le traitement acoustique des locaux

Il convient de distinguer entre l'isolation acoustique et la correction acoustique.

L'isolation acoustique a pour but d'empêcher que les bruits générés dans un local ne se transmettent dans des locaux adjacents. De la même manière, on vise à éviter la transmission des bruits venant de l'extérieur à l'intérieur d'une enceinte.

La **correction acoustique** consiste à obtenir un degré de diffusion acoustique uniforme dans tous les points d'une enceinte. On vise ainsi à améliorer les conditions acoustiques de sonorité en augmentant le confort acoustique intérieur du local.

On en déduit ainsi que lors de la réalisation d'un projet, il importe de tenir compte de l'usage auquel il sera destiné, pour distinguer l'isolation acoustique et la correction acoustique ou seulement l'une des deux options.

Par exemple, dans le cas des locaux destinés à des activités de restauration (bars, restaurants, etc.), l'isolation acoustique est faite pour ne pas nuire aux voisins et pouvoir se conformer aux normes pertinentes, et la correction acoustique est destinée, quant à elle, à apporter un bon confort acoustique à l'intérieur du local.

Introduction

La réglementation acoustique

Depuis le 1^{er} janvier 2000, la réglementation acoustique a été modifiée afin de s'adapter aux indices européens. Elle définit les performances acoustiques minimales requises dans un bâtiment d'habitation (arrêtés du 30 juin 1999). Elle s'applique aux constructions neuves et aux extensions de bâtiments existants, dans le secteur du logement collectif, individuel et individuel groupé.

L'attestation de prise en compte de la réglementation acoustique est à établir à l'achèvement des travaux de bâtiments d'habitation neuf à partir du 01/01/2013 suivant le Décret N° 2011-604 qui a pour but de renforcer et de contrôler la prise en compte de la règlementation acoustique.

Isolation acoustique

Il existe des indices acoustiques pour caractériser chaque type de bruit selon son origine. Ces indices proviennent soit de mesures de laboratoire (produits ou systèmes), soit de mesure sur le site.

Indice	d'afaiblissement	Mesure Labo	Mesure Site
Bruits aériens extérieurs	Trafic routier, ferroviaire	RA _{tr} (dB)	D _{nT,A,tr} (dB)
Bruits aériens intérieurs	Conversation, télévision	RA (dB)	D _{nT,A} (dB)
Bruits de chocs	Chute d'objet, bruit de pas	ΔL _w (dB)	L' _{nT,w} (dB)
Bruits d'équipements	Ascenceurs, robinetterie	L _w (dB(A))	L' _{nAT} (dB(A))

Correction acoustique

La correction acoustique vise à limiter la réverbération et à améliorer l'intelligibilité de la parole dans un local. Les indices utilisés pour mesurer la correction acoustique sont les suivants :

T = Durée de réverbération exprimée en seconde, c'est le temps que met une onde sonore avant de s'atténuer dans un champ diffus.

aw = Coefficient d'absorption pondéré, il est noté de 0 à 1 (absorption maximale) et c'est la capacité d'un élément à absorber une onde sonore à sa surface afin de contribuer à la réduction du temps de réverbération à l'intérieur d'un local.

La réglementation acoustique (NRA)

Les exigences de résultats acoustiques sont fixées par la NRA sur tous les bâtiments neuf à usage d'habitation individuel, groupé ou non et collectifs. Les résultats d'isolation acoustique et de correction acoustique sont mesurés (en dB) sur site une fois le local ou le logement terminés.

Les exigences de la nouvelle réglementation

A. Les solutions en cloisons et contre-cloisons

RESILIENDB

Description

Produit bicouche formé par une membrane auto-adhésive de bitume haute densité et un polyéthylène chimiquement réticulé thermo soudé.

AVANTAGES PRODUITS

- Efficace contre les bruits aériens et d'impacts
- Performance certifiée
- Solution de faible épaisseur
- Étanche à l'eau

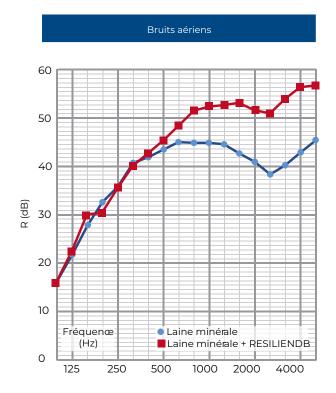
Domaine d'application et performances

Amortisseur entre 2 éléments pour :

- L'amélioration de l'affaiblissement acoustique aux bruits aériens des cloisons et contre-cloisons.
- L'isolation acoustique contre le bruit d'impact sous plancher bois.
- La réduction de la résonance des structures métalliques.

Caractéristiques techniques

		Produit			Palette			
Référence	Longueur (m)	Largeur (mm)	Epaisseur (mm)	Masse (g/ml)	Condit/boîte	Condit.	Poids/Condit (kg)	Condit/ Palette
RESILIENDB-46	10	46	3,90	175	1	Rouleau	1,75	252


MISE EN ŒUVRE

- 1. Couper les bandes à la longueur des profils.
- 2. Retirer le papier adhésif.
- Coller la bande sur le profil horizontal (sur la partie en contact avec le sol et sur le retour du profil).
- 4. Coller la bande sur le profil vertical.
- 5. Fixer la plaque à l'aide de vis

Performances

Caractéristiques techniques	Valeur	Unité	Normes
Amélioration acoustique (△Rw)	> 3	dB	EN 140-16
Raideur dynamique	≤ 100	MN/m³	EN 29052-1
Travail d'hystérésis	> 1,9	Nm	EN 3386-1
Déformation rémanente (24h comprimé à 50%, 23°C)	< 35	%	EN 1856
Contrainte de rupture en traction (sens longitudinal)	> 600	N/5 cm	EN 12311-1
Température d'utilisation	> 10	°C	-
Réaction au feu	F	Euroclasse	EN 13501-1
Conductivité thermique du polyéthylène réticulé	0,040	W/m.K	EN 12667 EN 12939

(*) PV: EUITT_UPLA 054/01 et EUITT_UPLA 052/01

Le conseil du pro!

Pour une mise en œuvre réussie :

Il n'est pas nécessaire que la bande soit complètement alignée sur les profils.

La mise en oeuvre et le stockage doiventsefaire à une température > 10°C.

- Entraxe de 0,6 m = 3 m
- Entraxe de 0,4 m = 3,8 m

A. Les solutions en cloisons et contre-cloisons

APPUI2DB

Description

Structure en acier développée pour intégrer un élément antivibratoire. Elément antivibratoire en caoutchouc naturel de dureté 60 Sha à haut pouvoir d'amortissement.

AVANTAGES PRODUITS

- Efficace en moyenne et haute fréquence
- Encoches pour faciliter le pliage
- Traitement spécial milieu humide

Domaine d'application et performances

Les appuis intermédiaires de la gamme Métalfase sont conçus pour être vissés à un profil de type montant, avec la possibilité de le positionner à différentes distances du mur. La fixation au mur se réalise au moyen de 2 trous d'ancrage.

Caractéristiques techniques

		Produit			Palette		
Référence	Longueur (m)	Charge permanente (daN)	Epaisseur cloison* (mm)	Pièces/ Condit.	Condit.	Poids/Condit (kg)	Condit/ Palette
APPUI2DB	143	10	60 à 120	25	Boîte	3,24	48

^{*} Epaisseur de la contre cloison hors plaque de parement

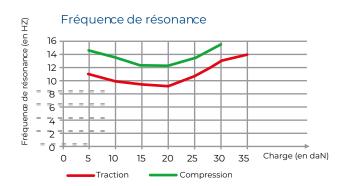
MISE EN ŒUVRE

- 1. Plier la patte de l'appui à un angle de 90°.
- 2. Fixer le rail bas.
- 3. Reporter la cote et fixer le rail haut.
- 4. Suivant les règles du DTU 25.41, tracer la hauteur de l'appui (ex: Montant M48/35 avec 2 BA13 hauteur de l'appui à 2,30 m maximum).
- 5. Percer et fixer l'appui contre le mur.
- 6. Régler le niveau à l'aide d'une règle et visser avec une vis TRPF.
- 7. Poser l'isolant et replier la partie de la patte qui dépasse.

Choix de l'appui et comportement dynamique

Le nombre d'appui est déterminé par le type de contre-cloison suivant les règles du DTU 25.41. Pour connaître la fréquence de résonance, on l'obtient par la formule suivante :

(Poids de la cloison + poids des éléments fixés) x superficie couverte par chaque appui.


Graphique 1:

Reporter la charge sur le graphique pour connaitre la déformation sous charge en mm.

Calcul de déformation Minimum Recommandé Maximum 25 Déformation (en mm) 20 15 10 5 0 Charge (en daN) 20 25 0 30 Traction Compression

Graphique 2:

Reporter la charge sur le graphique pour connaître la fréquence de résonance en Hz.

Le conseil du pro!

Pour une meilleure performance : Fixer le rail haut à l'aide d'un cordon de mastic souple.

Hauteur maxi entre appuis:

Pareme	nt	1 BA13 BA		2 BA13		
Entraxe (cm)	60	40	60	40	
M/0.75	[2,00	2,25	2,30	2,55	
M48-35][2,40	2,65	2,75	3,05	
N4/0 F0	[2,15	2,40	2,50	2,75	
M48-50][2,55	2,85	2,95	3,30	
MC2 75	[2,40	2,65	2,75	3,00	
M62-35][2,85	3,15	3,25	3,60	
1450 75	[2,55	2,80	2,90	3,20	
M70-35][3,00	3,35	3,45	3,85	

A. Les solutions en cloisons et contre-cloisons

APPUISAD

Description

Structure en acier spécialement développée pour intégrer élément antivibratoire. Elément antivibratoire en caoutchouc naturel de dureté 60 Sha à haut pouvoir d'amortissement.

AVANTAGES PRODUITS

- Amortissement élevé
- Encoches pour faciliter le pliage
- Cloison grande hauteur

Domaine d'application et performances

L'entretoise de la gamme Métalfase est conçue pour être vissée à une ossature double (cloison SAD), quelle que soit la hauteur ou l'épaisseur totale de la cloison.

Caractéristiques techniques

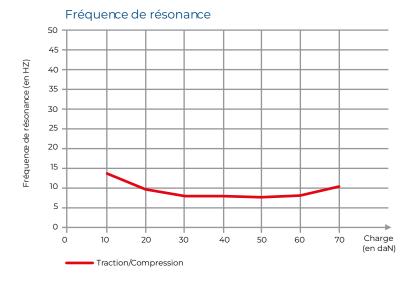
		Produit		Unité de Vente			Palette
Référence	Longueur (m)	Charge permanente (daN)	Epaisseur cloison* (mm)	Pièces/ Condit.	Condit.	Poids/Condit (kg)	Condit/ Palette
APPUISAD	220	10	160 à 500**	25	Boîte	3,62	100

^{*} Déplié à angle de 90°

MISE EN ŒUVRE

- 1. Plier les pattes de l'entretoise à un angle de 90°.
- 2. Fixer le rail bas.
- 3. Reporter la cote et fixer le rail haut.
- 4. Plaquer les entretoises contre les montants (la distance maxi entre chaque entretoise doit être de
- 5. Poser les isolants et replier la partie de la patte si elle dépasse du montant.

Epaisseur de la cloison avec plaques de parement (montant double à partir de 220 mm)


Choix de l'appui et comportement dynamique (appuiSAD)

Le nombre d'entretoise est déterminé par la hauteur de cloison. Pour connaître la fréquence de résonance, on l'obtient par la formule suivante:

Poids de la cloison + poids des éléments fixés x superficie couverte par chaque entretoise.

Graphique 1:

Reporter la charge sur le graphique pour connaître la fréquence de résonance en Hz.

Le conseil du pro!

Pour une meilleure performance : Fixer le rail haut à l'aide d'un cordon de mastic souple

Quantitatif au m² (base sur une hauteur de 2,5 m) :

- APPUISAD entraxe de 0,6 m= 0,8 pièce
- RESILIENDB sous rail = 1,80 m

B. Les solutions en cloisons et plafonds

RESILIENDBH

Description

Le RESILIENDBH est une membrane auto-adhésive de bitume haute densité, armée, et filmée sur l'autre face.

AVANTAGES PRODUITS

- Efficace contre les bruits aériens et d'impact
- Performance certifiée
- Solution de faible épaisseur
- Etanche à l'eau

Domaine d'application et performances

Amortisseur entre 2 plaques de plâtre pour :

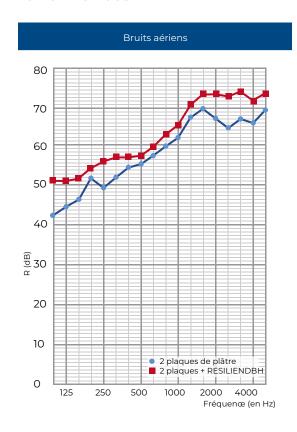
- Amélioration de l'affaiblissement acoustique aux bruits aériens en plafond, cloisons et contre cloisons.
- Amélioration de l'isolation acoustique contre le bruit d'impact sous plancher.

Caractéristiques techniques

	Produit					Unité de Vente		
Référence	Longueur (m)	Largeur (m)	Epaisseur (mm)	Masse (g/ml)	Condit/boîte	Condit.	Poids/Condit (kg)	Condit/ Palette
RESILIENDBH	6	1	4	6	1	Rouleau	36	30

MISE EN ŒUVRE

Vue Globale

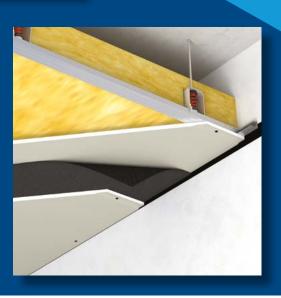

La surface doit être propre et sèche :

- 1. Traiter les rails et cornières avec un RESILIENDB.
- 2. Commencer par un angle en débordant sur une dizaine de cm.
- 3. Retirer le papier adhésif.
- 4. Coller la membrane sur la première plaque de plâtre et veiller à ce que les lés soient bien posés bord à
- 5. Visser la deuxième plaque de plâtre à l'aide de vis TTPC.

Performances

Caractéristiques techniques	Valeur	Unité	Normes
Amélioration acoustique (△Rw)	> 3	dB	EN 140-16
Raideur dynamique	≤ 100	MN/m³	EN 29052-1
Travail d'hystérésis	> 1,9	Nm	EN 3386-1
Déformation rémanente (24h comprimé à 50%, 23°C)	< 35	%	EN 1856
Contrainte de rupture en traction (sens longitudinal)	> 600	N/5 cm	EN 12311-1
Température d'utilisation	> 10	°C	-
Réaction au feu	F	Euroclasse	EN 13501-1
Conductivité thermique du polyéthylène réticulé	0,040	W/m.K	EN 12667 EN 12939

Le conseil du pro!


Pour une pose en plafond, le collage de la membrane doit se faire à l'avancement de la pose de la deuxième peau.

La mise en oeuvre et le stockage doivent se faire à une température > 10°C

Quantitatif au m² (base sur une hauteur de 2,5 m) :

- en mur et plafond = 1,05 m
- en périphérie mur = 0,90 m
- en périphérie plafond = 0,70 m

C. Les solutions en plafonds

CAVALIERDB

. .

Description

Structure et clip de sécurité en acier zingué bichromaté adaptés au milieu humide, spécialement développés pour intégrer un élément antivibratoire.

Elément antivibratoire en caoutchouc naturel de dureté 45 Sha ou 60 Sha à haut pouvoir d'amortissement.

AVANTAGES PRODUITS

- Efficace en moyenne et haute fréquence
- Clip de sécurité
- Coupelle de réglage
- Spécial milieu humide

Les cavaliers de la gamme Métalfase sont conçus pour la suspension de fourrures 17/47 et 18/45 pour tous types de plafonds suspendus en plaque de plâtre.

Caractéristiques techniques

		Produit		Palette			
Référence	Longueur (m)	Charge permanente (daN)	Charge de rupture (daN)	Pièces/ boîte	Condit.	Poids/Condit (kg)	Condit/ Palette
CAVALIERDB30	42	8 à 30	260*	50	Boîte	5,10	100
CAVALIERDB60	42	20 à 60	260*	50	Boîte	5,10	100

^{*}Valeur donnée avec clip de sécurité

MISE EN ŒUVRE

- 1. Tracer le niveau du plafond fini, en tenant compte de la déformation sous charge.
- 2. Insérer le clip de sécurité sur un côté du cavalier et le laisser en position relevée.
- 3. Positionner les tiges filetées suivant le plan de calepinage.
- 4. Insérer le support dans la tige filetée et aligner les coupelles au laser ou au cordeau.
- 5. Clipser les fourrures sur les cavaliers et rabattre le clip.
- 6. Visser les plaques de plâtre en prenant soin de commencer par un angle en vissant en premier la périphérie.

Choix de la suspente et comportement dynamique

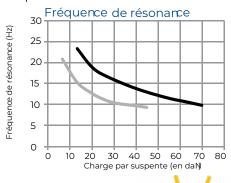
Pour la sélection et les performances, il faut connaître la charge par suspente en kg. On l'obtient par la formule suivante :

Poids de plafond x la superficie couverte pour chaque suspente acoustique.

Exemple : supposons que le poids d'un plafond est de 30 kg/m^2 , que la distance entre les suspentes est de 1,00 m et l'entraxe entre les profils est de 0,6 m alors on obtient le résultat suivant : 1,00 x $0,6=0,6 \text{ m}^2$ de superficie couverte par la suspente. Charge par suspente : 30 x 0,6=18 kg.

Graphique 1:

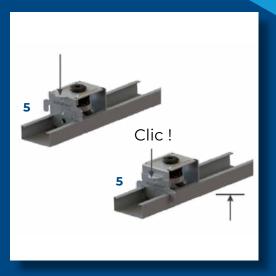
Reporter la charge sur le graphique pour connaître la déformation sous charge en mm.


CAVALIER/OMEGA

Graphique 2:

Reporter la charge sur le graphique pour connaître la fréquence de résonance en Hz.

Le conseil du pro!


Quantitatif au m² (base sur une distance entre suspentes de 1,2 m):

- Entraxe fourrures 0,5 m = 2,10 pièces
- Entraxe fourrures 0,6 m = 1,80 pièces

Pour faciliter la mise en oeuvre et afin d'éviter que les suspentes remontent au moment de la mise en position de la première plaque, fixer un contre écrou sur les premières suspentes en réglant l'écrasement sous charge.

C. Les solutions en plafonds

CAVALIERDBH

Description

Elément antivibratoire fabriqué avec un ressort de qualité corde de piano d'une grande résistance mécanique guidé par 2 caoutchoucs naturels, l'ensemble lui confère un haut pouvoir d'amortissement et d'isolation.

- Efficace en moyenne et haute fréquence
- Clip de sécurité
- Coupelle de réglage
- Spécial milieu humide

Domaine d'application et performances

Les cavaliers à ressort de la gamme Métalfase sont conçus pour la suspension sur fourrures 17/47 et 18/45 de tous types de plafonds suspendus en plaque de plâtre.

Caractéristiques techniques

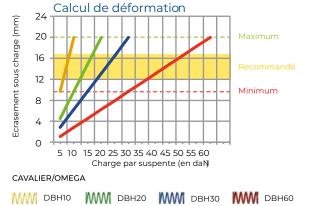
		Produit		Palette			
Référence	Longueur (m)	Charge permanente (daN)	Charge de rupture (daN)	Pièces/ boîte	Condit.	Poids/Condit (kg)	Condit/ Palette
CAVALIERDBH10	88	5 à 10	250*	25	Boîte	4,31	100
CAVALIERDBH20	88	10 à 20	250*	25	Boîte	4,60	100
CAVALIERDBH30	88	15 à 30	250*	25	Boîte	4,88	100
CAVALIERDBH60	88	30 à 60	250*	25	Boîte	5,06	100

^{*}Valeur donnée avec clip de sécurité

MISE EN ŒUVRE

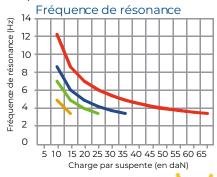
- 1. Tracer le niveau du plafond fini, en tenant compte de la déformation sous charge.
- 2. Insérer le clip de sécurité sur un côté du cavalier et le laisser en position relevée.
- 3. Positionner les tiges filetées suivant le plan de calepinage.
- 4. Insérer le support dans la tige filetée et aligner les coupelles au laser ou au cordeau.
- 5. Clipser les fourrures sur les cavaliers et rabattre le clip.
- 6. Visser les plaques de plâtre en prenant soin de commencer par un angle en vissant en premier la périphérie.

Choix de la suspente et comportement dynamique


Pour la sélection et les performances, il faut connaître la charge par suspente en kg. On l'obtient par la formule suivante :

Poids de plafond x la superficie couverte pour chaque suspente acoustique.

Exemple : supposons que le poids d'un plafond est de 30 kg/m^2 , que la distance entre les suspentes est de 1,00 m et l'entraxe entre les profils est de 0,6 m alors on obtient le résultat suivant : 1,00 x $0,6=0,6 \text{ m}^2$ de superficie couverte par la suspente. Charge par suspente : 30 x 0,6=18 kg.


Graphique 1:

Reporter la charge sur le graphique pour connaître la déformation sous charge en mm.

Graphique 2:

Reporter la charge sur le graphique pour connaître la fréquence de résonance en Hz.

Le conseil du pro!

Pour faciliter la mise en oeuvre et afin d'éviter que les suspentes remontent au moment de la mise en position de la première plaque, fixer un contre écrou sur les premières suspentes en réglant l'écrasement sous charge.

Quantitatif au m^2 (base sur une distance entre suspentes de 1,2 m):

- Entraxe fourrures 0,5 m = 2,10 pièces
- Entraxe fourrures 0,6 m = 1,80 pièces

C. Les solutions en plafonds

OMEGADB

Description

Structure en acier zingué bichromaté adaptée au milieu humide, spécialement développée pour intégrer un élément antivibratoire. Elément antivibratoire en caoutchouc naturel de dureté 45 Sha ou 60 Sha à haut pouvoir d'isolation.

- Efficace en moyenne et haute fréquence
- Coupelle de réglage
- Spécial milieu humide

Domaine d'application et performances

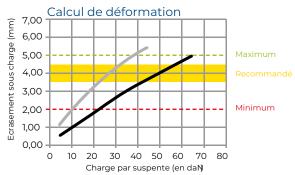
Les attaches Omega de la gamme Métalfase sont conçues pour la suspension de tous types de faux plafond, démontables ou non ainsi que pour supporter des machines ayant un régime de travail supérieur à 1000 tr/min. Elles s'utilisent avec une tige filetée de diamètre 6 mm.

		Produit		Palette			
Référence	Référence Hauteur Charge Charge de rupture (m) permanente (daN) (daN)				Pièces/ boîte Condit. Poids/Condit (kg)		
OMEGADB30	43	8 à 30	250	25	Boîte	3,00	100
OMEGADB60	43	20 à 60	250	25	Boîte	3,00	100

MISE EN ŒUVRE

- 1. Tracer le niveau du plafond fini, en tenant compte de la déformation sous charge.
- 2. Positionner les supports au plafond suivant le plan de calepinage.
- 3. Insérerlestigesfiletées (prédécouper à la bonne longueur) dans les coupelles.
- 4. Visser les attaches et aligner les tiges filetées au laser ou au cordeau.
- 5. Visser les plaques de plâtre en prenant soin de commencer par un angle en vissant en premier la périphérie.

Choix de la suspente et comportement dynamique

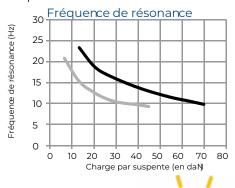

Pour la sélection et les performances, il faut connaître la charge par suspente en kg. On l'obtient par la formule suivante :

Poids de plafond x la superficie couverte pour chaque suspente acoustique.

Exemple: supposons que le poids d'un plafond est de 30 kg/m^2 , que la distance entre les suspentes est de 1,00 m et l'entraxe entre les profils est de 0,6 m alors on obtient le résultat suivant : 1,00 x $0,6 = 0,6 \text{ m}^2$ de superficie couverte par la suspente. Charge par suspente : 30 x 0,6 = 18 kg.

Graphique 1:

Reporter la charge sur le graphique pour connaitre la déformation sous charge en mm.

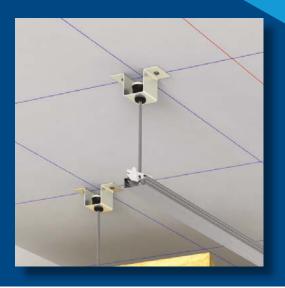


CAVALIER/OMEGA

Graphique 2:

Reporter la charge sur le graphique pour connaître la fréquence de résonance en Hz.

Quantitatif au m² (base sur une distance entre suspentes de 1,2 m) :


- Entraxe fourrures 0,5 m = 2,10 pièces
- Entraxe fourrures 0,6 m = 1,80 pièces

Le conseil du pro!

Pour faciliter la mise en œuvre et afin d'éviter que les attaches remontent au moment de la mise en position de la première plaque, fixer un contre écrou sur les premières attaches en réglant l'écrasement sous charge.

C. Les solutions en plafonds

OMEGADBH

Description

Structure en acier zingué bichromaté adaptée au milieu humide, spécialement développée pour intégrer un élément antivibratoire. Elément antivibratoire fabriqué avec un ressort de qualité corde de piano d'une grande résistance mécanique guidé par 2 caoutchoucs naturels, l'ensemble lui confère un haut pouvoir d'amortissement et d'isolation.

- Efficace pour toutes les fréquences
- Coupelle de réglage
- Spécial milieu humide

Domaine d'application et performances

Les attaches Omega à ressort de la gamme Métalfase sont conçues pour la suspension de tous types de faux plafond, démontables ou non ainsi que pour supporter des machines ayant un régime de travail supérieur à 450 tr/min. Elles s'utilisent avec une tige filetée de diamètre 6 mm.

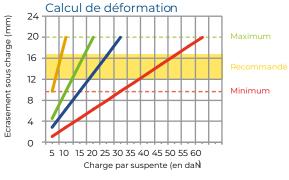
Caractéristiques techniques

	Produit				Unité de Vente			
Référence	Hauteur (m)	Charge permanente (daN)	Charge de rupture (daN)	Pièces/ boîte	Condit.	Poids/Condit (kg)	Condit/ Palette	
OMEGADBH10	80	5 à 10	250	25	Boîte	4,76	48	
OMEGADBH20	80	10 à 20	250	25	Boîte	5,06	48	
OMEGADBH30	80	15 à 30	250	25	Boîte	5,33	48	
OMEGADBH60	80	30 à 60	250	25	Boîte	5,50	48	

MISE EN ŒUVRE

- 1. Tracer le niveau du plafond fini en tenant compte de la déformation sous charge.
- 2. Positionner les supports au plafond suivant le plan de calepinage.
- 3. Insérer les tiges filetées (coupées à la bonne longueur) dans les coupelles.
- 4. Visser les cavaliers et les aligner au laser ou au cordeau.
- 5. Positionner les fourrures et les verrouiller en tournant le cavalier d'un 1/4 de tour.
- 6. Visser les plaques de plâtre en prenant soin de commencer par un angle en vissant en premier la périphérie.

Choix de la suspente et comportement dynamique

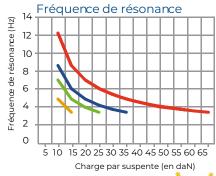

Pour la sélection et les performances, il faut connaître la charge par suspente en kg. On l'obtient par la formule suivante:

Poids de plafond x la superficie couverte pour chaque suspente acoustique.

Exemple: supposons que le poids d'un plafond est de 30 kg/m², que la distance entre les suspentes est de 1,00 m et l'entraxe entre les profils est de 0,6 m alors on obtient le résultat suivant : 1,00 x 0,6 = 0,6 m² de superficie couverte par la suspente. Charge par suspente : 30 x 0,6 = 18 kg.

Graphique 1:

Reporter la charge sur le graphique pour connaitre la déformation sous charge en mm.



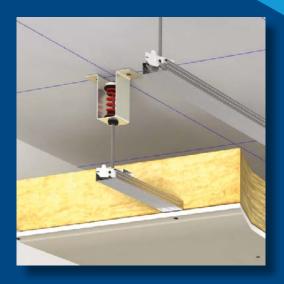
CAVALIER/OMEGA

MM DBH30 MM DBH30 MM DBH60

Graphique 2:

Reporter la charge sur le graphique pour connaitre la fréquence de résonance en Hz.

Quantitatif au m² (base sur une distance entre suspentes de 1,2 m):


- Entraxe fourrures 0,5 m = 2,10 pièces
- Entraxe fourrures 0,6 m = 1,80 pièces

Le conseil du pro!

Pour faciliter la mise en œuvre et afin d'éviter que les attaches remontent au moment de la mise en position de la première plaque, fixer un contre écrou sur les premières attaches en réglant l'écrasement sous charge.

C. Les solutions en plafonds

SUPPORTDBH

Structure en acier zingué bichromaté adaptée au milieu humide spécialement développée pour intégrer un élément antivibratoire. Elément antivibratoire fabriqué avec un ressort de qualité corde de piano d'une grande résistance mécanique guidé par un mélange de caoutchouc et de liège naturel, l'ensemble lui confère un haut pouvoir d'amortissement et d'isolation.

- Efficace pour toutes les fréquences
- Charge élevée
- Coupelle de réglage
- Certifié au montage feu

Les supports acoustiques à ressort de la gamme Métalfase sont conçus pour la suspension de tous types de faux plafond, démontables ou non ainsi que pour supporter des machines ayant un régime de travail supérieur à 450 tr/min. Elles s'utilisent avec une tige filetée de diamètre 6mm en partie basse et 6 ou 8 mm en partie haute.

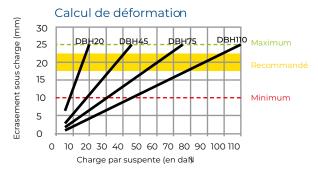
Caractéristiques techniques

Produit					Palette		
Référence	Hauteur (m)	Charge permanente (daN)	Charge de rupture (daN)	Pièces/ boîte	Condit.	Poids/Condit (kg)	Condit/ Palette
SUPPORTDBH20	100	10 à 20	350	20	Boîte	7,59	48
SUPPORTDBH45	100	20 à 45	350	20	Boîte	8,03	48
SUPPORTDBH75	100	45 à 75	350	20	Boîte	8,17	48
SUPPORTDBH110	100	75 à 110	350	20	Boîte	8,53	48

MISE EN ŒUVRE

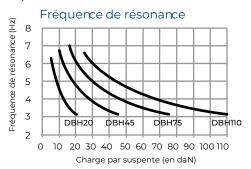
- 1. Tracer le niveau du plafond fini, en tenant compte de la déformation sous charge.
- 2. Positionner les supports au plafond suivant le plan de calepinage.
- 3. Insérer les tiges filetées (coupées à la bonne longueur) dans les coupelles.
- 4. Visser les supports et aligner les tiges filetées au laser ou au cordeau.
- 5. Visser les plaques de plâtre en prenant soin de commencer par un angle en vissant en premier la périphérie.

Choix de la suspente et comportement dynamique


Pour la sélection et les performances, il faut connaître la charge par suspente en kg. On l'obtient par la formule suivante :

Poids de plafond x la superficie couverte pour chaque suspente acoustique.

Exemple: supposons que le poids d'un plafond est de 30 kg/m^2 , que la distance entre les suspentes est de 1,00 m et l'entraxe entre les profils est de 0,6 m alors on obtient le résultat suivant : 1,00 x $0,6 = 0,6 \text{ m}^2$ de superficie couverte par la suspente. Charge par suspente : 30 x 0,6 = 18 kg.


Graphique 1:

Reporter la charge sur le graphique pour connaître la déformation sous charge en mm.

Graphique 2:

Reporter la charge sur le graphique pour connaître la fréquence de résonance en Hz.

Quantitatif au m² (base sur une distance entre suspentes de 3 m) :

- Entraxe fourrures 0,5 m = 0,34 pièce

Le conseil du pro!

Pour faciliter la mise en œuvre et afin d'éviter que les suspentes remontent au moment de la mise en position de la première plaque, fixer un contre écrou sur les premièrs supports en réglant l'écrasement sous charge.

D. Les solutions pour les descentes d'eaux

RESILIENDB

Description

Produit bicouche formé par une membrane auto-adhésive de bitume haute densité et un polyéthylène chimiquement réticulé thermo soudé.

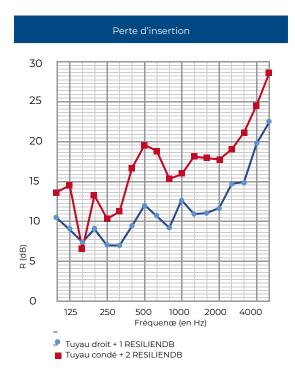
AVANTAGES PRODUITS

- Efficace contre les bruits de chute d'eau
- Performance certifiée
- Solution de faible épaisseur
- Etanche à l'eau

Domaine d'application et performances

Réduction des bruits des conduits d'évacuation pour tous types de descentes d'eaux pluviales ou d'eaux usées. Ce produit permet d'apporter une masse acoustique à la colonne afin de minimiser les fréquences de résonnances.

Produit					Unité de Vente	Palette		
Référence	Longueur (m)	Largeur (mm)	Epaisseur (mm)	Masse (g/ml)	Condit/ boîte	Condit.	Poids/Condit (kg)	Condit/ Palette
RESILIENDB420	10	420	3,90	1400	1	Rouleau	14	32


MISE EN ŒUVRE

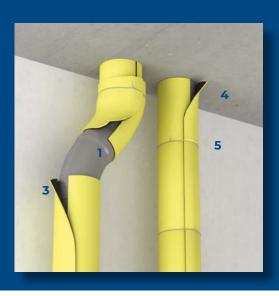
- 1. La surface doit être sèche et propre.
- 2. Découper une bande sur la longueur correspondant au périmètre du tuyau + 5 cm pour assurer le recouvrement.
- 3. Retirer le film plastique.
- 4. Appliquer par pression d'abord au centre puis sur une extrémité et pour finir de l'autre côté jusqu'à l'obtention d'une parfaite adhérence.
- 5. Pour garantir la durabilité du produit, appliquer des colliers tous les mètres et à chaque raccord de bande.

Choix de la suspente et comportement dynamique

Caractéristiques techniques	Valeur	Unité
Perte d'insertion tuyau droit (△Ls)	12,3 (1)	dB
Perte d'insertion tuyau courbe (△Ls)	17,8 ⁽²⁾	dB
Travail d'hystérésis	9,5 ⁽³⁾	dB
Déformation rémanente (24h comprimé à 50%, 23°C)	< 35%	/
Conductivité thermique du polyéthylène (λ)	0,040	W/m.k
Perméabilité à la valeur d'eau (δ)	30.10-5	mg/m.H.Pa
Température d'utilisation	> 10	°C
Réaction au feu (Euroclasse)	F	/

(1) PV: Bajante 01/2003 - 10/2003 comparatif en chambre de réception (2) PV: Bajante 01/2003 - 12/2003 comparatif en chambre de réception

(3) PV: IETcc_19.960 comparatif en chambre d'émission



Le conseil du pro!

Chevaucher les lés entre eux d'au moins 5 cm et maintenir l'ensemble par un collier de serrage en nylon. Doubler le RESILIENDB à chaque coude. La mise en œuvre et le stockage doit se faire à une température >10°C.

Quantitatif pour 1 m de tuyau (base sur une hauteur de 2,5 m):

- Tuyau droit <125 mm = 1,05 m
- Tuyau coudé <125 mm = 1,15 m

MILIEU TRÈS HUMIDE

Introduction

Les locaux très humides en collectifs, centres aquatiques, piscines sont souvent soumis à de fortes contraintes en termes de variations de taux d'humidité et de températures. Leur conception nécessite un traitement particulier avec des produits adaptés afin d'assurer la durabilité de ce type d'ouvrage et la bonne santé des occupants.

La conception des ouvrages doit tenir compte des conditions d'exposition à l'humidité du local. ´ cas où il y a risque de condensation prévoir une ossature adaptée.

Il existe une classification très précise des locaux humides.

Le cahier du CSTB (Centre Scientifique et Technique du Bâtiment) n° 3567 – Mai 2006 fait foi en la matière et sert de **référence pour le choix des parois**, tant du point de vue des matériaux constitutifs que pour celui des revêtements de finition qui leur sont associés.

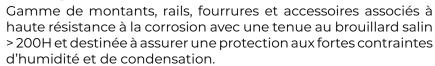
Classement des locaux en fonction de l'exposition à l'humidité

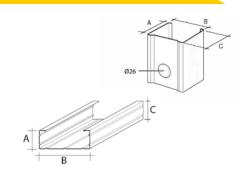
Les locaux sont classés en fonction de leur hygrométrie et de leur exposition à l'eau et de son entretien.

Classement des locaux

	de :: nt -	ectif nes; tion sans thy- tche un rcial); dans , aé-	ssà n n te	
« Exemples » de classement minimal	Locaux normalement ventilés et chauffés: - salles d'eau intégrant un receveur de douche et/ou une baignoire; - celliers non chauffés, garages; - cabines de douche ou salle de bain à caractère privatif dans des locaux recevant du public: douches dans des hôtels bloc WC et lavabos dans les bureaux.	- douches individuelles à usage collidans des locaux de type : internats, usi vestiaires collectifs sauf communica directe ⁽¹⁾ avec un local EC; offices, local de réchauffage des plats zone de lavage; salles d'eau à usage privatif avec un jet dro-massant dans le receveur de dou et/ou la baignoire; laveries collectives n'ayant pas caractère (écoles, hôtels, centres de vacances, sanitaires accessibles au public cles locaux de type ERP: écoles, hôtels roports,	- douches collectives, plusieurs personnes à la fois dans le même local : stades, gymnases; - cuisines collectives ^[2] et sanitaires accessibles au public si nettoyage prévu au jet d'eau sous haute pression et/ou avec produit agressif; - laveries ayant un caractère commercial et destinées à un usage intensif; - blanchisseries centrales d'un hôpital; - centres aquatiques, balnéothérapies, piscines (hormis les parois de bassin) y compris locaux en communication directe avec le bassin.	
Entretien - nettoyage	L'eau intervient pour le nettoyage, mais ja- mais sous forme d'eau projetée sous pres- sion. Nettoyage réalisé selon des méthodes et avec des moyens non agressifs.	L'eau intervient pour l'entretien et le net- toyage. Ce type de locaux est normalement lavé au jet : des dispositions d'évacuation d'eau au sol doivent être prévues (exemple siphon de sol). Le nettoyage au jet d'eau sous pression supérieure à 10 bars est exclu. Le nettoyage (fréquence généralement quotidienne) est réalisé avec des produits de pH entre 5 et 9 à une température ≤ 40 °C.	Le nettoyage au jet d'eau sous haute pression est admis. Le nettoyage (fréquence généralement quotidienne) peut -être réalisé avec des produits agressifs (alcalins, acides chlorés,) et/ou à une température ≤ 60°C. Les revêtements de finition des parois du local et les interfaces (mastic, garniture de joints,) doivent être compatibles avec l'agressivité des produits d'entretien (pH), du nettoyage (pressions des appareils) et de la température.	porte ou cloison)
Exposition à l'eau	En cours d'exploitation du local, l'eau est pro- jetée épisodiquement sur au moins une paroi (ruissellement).	En cours d'exploitation du local, l'eau intervient sous forme de projection ou de ruissellement et elle agit de façon discontinue pendant des périodes plus longues que dans le cas EB+privatifs, le cumul des périodes de ruissellement sur 24h ne dépassant pas 3 heures.	L'eau intervient de fa- çon quasi continue sous forme liquide sur au moins une paroi.	1. Communication directe = absence de séparation (porte ou
Hygrométrie du local	Forte	Forte	Très forte	directe = abse
Type de local	EB+p Locaux privatifs Locaux humides à usage privatif	EB+c Locaux collectifs Locaux humides à usage collectif	EC Locaux très humides en ambiance non agressive	1. Communication

Communication directe = absence de séparation (porte ou cloison)
 Si les Documents Particuliers du Marché prévoient une utilisation dont les attendus sont conformes aux conditions des locaux EB+ collectifs, il est possible de déclasser la cuisine en EB+ collectifs.


MILIEU TRÈS HUMIDE


A. Les solutions en murs et plafonds

OSSATURES SPÉCIALES MILIEU HUMIDE

Description

Protection de la structure porteuse aux risques d'humidité et de condensation en mur et plafond pour les locaux EB+c.

	Produits					Unité de Vente			Palette	
Ñ	Désignation		Longueur (mm)	А	В	С	Pièces/ Condit.	Condit.	Long/ Condit.(m)	Condit/ Palette
ture	Montant de 48 - Spécial milieu humide	OMHM4835	3000/4000	34	46,50	36	10	Paquet	30/40	36
sat	Rail 48* - Lisse Clip*	OCR48 - LISSECLIPSPP	3000	/	/	/	/	/	/	/
ŏ	Fourrure 17/47 - Spécial milieu humide	OMHF1747	3000/5250	17	47	17	10	Paquet	30/52,5	24
	Fourrure 18/45- Spécial milieu humide	OMHF1845	3000/5300	18	45	18	10	Paquet	30/53	24

	Désignation	Référence	Longueur (mm)	Charge maxi (daN)	Pièces/ Condit.	Condit.	Condit/Palette
ires	Suspentes sécables	SSECMH0600	600	33	20	Boîte	100
550	Cavalier pivot milieu humide	CAVALIERMH	51	41	100	Boîte	100
Ce	Raccord pour fourrure	RACCORD1845 / RACCORD1747	88	/	50	Boîte	100
1	Vis TTPC milieu humide	VISMH25 / VISMH35	25/35	/	1000	Boîte	432/288
	Tige filetée diam 6mm milieu humide	TIGFIL06MH	1000	/	100	Boîte	/

MISE EN ŒUVRE

- 1. Poser des ossatures et des accessoiressuivantlagamme « spéciale milieu humide ».
- 2. Poser des plaques hydrofuges à haute performance avec les VISMH côté pièce humide et plaque standard côté pièce sèche.
- 3. Joint et rebouchage suivant prescription du fabricant de plaque.
- 4. Protection du pied cloison à la périphérie du local avec un SPEC (Système de Protection à l'Eau sous Carrelage).
- 5. Joint mastic élastomère pour les finitions et pour les traversées de canalisation.

Choix de l'ossature et performance

Durabilité des éléments d'ossatures :

Nos ossatures et accessoires dédiés ont fait l'objet de tests de tenue au brouillard salin afin de démontrer une durabilité de 200 heures des éléments d'ossature dans les ambiances prévisibles compte tenu du domaine d'emploi visé. La durabilité est appréhendée notamment en termes d'absence de rouille rouge. Cette exigence correspondant à un degré d'enrouillement Ri 1 selon Normes NF EN ISO 4628-3 et à un défaut S2 selon Normes NF EN ISO 4628-1.

Ce niveau de protection permet de répondre aux locaux jusqu'à EB+c tels que :

Localisation	Cloisons/ Contre cloisons	Plafonds
Cuisine collective si l'exposition est < à 3h par jour (école, hôtel, maison de rettraite, hôpital)	4	4
Douche à l'italienne	4	4
Salle d'eau individuelle avec jet hydromassant (maison individuelle, résidence personnes âgées, hôtel, hôpital)	4	4
Douce collective individuelle (usine, internat)	4	4
Sanitaire accessible au public (école, restaurant, aéroport, hôtel)	4	4
Vestiaire collectif sans communication directe avec douche collective ou piscine (stade, gymnase, salle de sport)	4	4
Laverie collective non commerciale (école, hôpital, hôtel)	4	4

Le conseil du pro!

Avant toute utilisation, vérifier que les produits sont bien identifiés « milieu humide ».

(Sauf rail & lisse clip traités milieu humide suivant la norme NF). L'entraxe des ossatures est limitée à 0,40m pour les cloisons avec une finition simple peau recevant une finition carrelage. S'assurer que la plaque et les systèmes de protection à l'eau sous carrelage (SPEC) sont sous avis technique.

PROTECTION INCENDIE

Introduction

Classement des locaux

La réglementation contre l'incendie se réfère à deux critères essentiels: la réaction au feu pour les produits et la résistance au feu pour les ouvrages. Elle se mesure par des PV d'essais réalisés en laboratoire qui en précisent les classements.

Réaction au feu des matériaux :

Classe	RCOLAS es selon N 13501	la NF	Classement M Exigence
A1	-	_	Incombustible
	sl	d0	МО
A2	sl	d1	
AZ	s2 d0	d0	
	s3	d1	MI
	sl	d0	IMII
В	s2	d1	
	s3	_	
	sl	d0	
С	s2	d1	M2
	s3	_	
	sl	d0	147
D	s2	d1	M3
	s3	_	M4 (non gouttant)

La réaction au feu est la contribution d'un matériau à la propagation d'un incendie.

Les produits sont classés suivant leur contribution selon les Euroclasses avec leurs indices «s» pour l'opacité des fumées et «d» pour les gouttes enflammées.

Un avantage indéniable de l'acier est qu'il est incombustible (classification AI des matériaux de constructions).

Autre avantage de l'acier, il dispose d'une bonne ductilité, c'est à dire une capacité à se déformer et à absorber une énergie sans rupture.

Réaction au feu des ouvrages :

Les ouvrages sont classés selon leur performance de résistance au feu, c'est à dire le temps durant lequel l'élément de construction joue son rôle de limitation de la propagation. La réglementation française classe les éléments de construction en 3 catégories :

- Stabilité mécanique : R
 - C'est le temps pendant lequel un élément porteur assume sa fonction sans s'effondrer ou se déformer de manière excessive.
- Etanchéité aux flammes : E (ou «RE» si l'élément est porteur)
 L'ouvrage doit être étanche aux flammes et aux gaz chauds ou inflammables
- Etanchéité aux flammes et isolation thermique : El (ou «REI» l'élément porteur) L'ouvrage doît être étanche aux flammes et aux gaz, sans transfert de chaleur > 140°C en moyenne.

Les degrés de résistance au feu s'expriment en durée (en minutes).

A partir des symboles indiqués ci-dessus, les classements «européens» sont par exemple : pour une poutre stable au feu 1 heure : R 60 et pour une cloison 98/48 : El 60.

Classification des bâtiments:

Le règlement de sécurité dans les bâtiments d'habitation est défini par l'arrêté du 31 Janvier 1986. Les bâtiments sont classés selon leur utilisation ainsi que leur hauteur. Dans le cas des Etablissements Recevant du Public (ERP), on tient compte également de la capacité d'accueil en nombre de personnes. On distingue :

- Les bâtiments d'habitation et logements foyers jusqu'à 50m de hauteur,
- Les ERP jusqu'à 28m de hauteur,
- Les Immeubles de Grande Hauteur (IGH) :
 - · Les bâtiments d'habitation > 50m,
 - · Les ERP > 28m,
- Les bâtiments industriels et installations classées.

Les solutions SPP:

Afin de valider les performances techniques de nos ossatures, nous avons testé différents montages en faisant varier le type et le nombre de plaque. A ce jour SPP, en partenariat avec l'UMPI-FFB c'est plus de 20 essais ou calcul permettant de valider la résistance au feu des systèmes que ce soit en cloison, plafond ou trappes de visites.

Mettre en œuvre nos produits c'est la garantie d'avoir des ossatures et des accessoires de qualité française, le respect des normes européennes et NF, le respect des montages conformes aux DTU 25.41 et surtout l'assurance de la réalisation d'ouvrages performants visés par des rapports d'essais.

Mode opératoire et garantie des performances feu :

Les ouvrages doivent être réalisés conformément aux descriptifs des procès-verbaux en cours de validité. Les travaux de plâtrerie sont exécutés avant pénétration et intervention des autres corps d'état.

PROTECTION INCENDIE

A. Le solutions en cloisons

RAILS ET MONTANTS

AVANTAGES PRODUITS

Gamme de montants et rails avec des tolérances dimensionnelles certifiée NF411 (épaisseur et protection d'acier, retours d'ailes et angles,...), et destinée à assurer une fonction de protection incendie.

- Conforme au DTU25.41
- Largeur de cloisons ≤ 150 mm
- Ouvrage sous PV d'essai
- Hauteur de cloisons ≤ 4 m

Domaine d'application et performances

Cloison de distribution intérieure de tous types de locaux d'usage privatif ou collectif visée par le DTU 25.41.

Cloisons distributives résistantes au feu El 30 et El 60 de 98 à 150 mm, réalisées par vissage sur montant simple ou double plaque de plâtre BA 13 certifié NF EN 520.

Caractéristiques techniques

	Produit						Unité de Vente	
Désignation	Référence	Longueur (mm)	А	В	С	Condit/ boîte	Condit.	
Rails 48	OCR48	3000	28	48	28	10	Paquet	
Rails 70	OCR70	3000	28	70	28	10	Paquet	
Rails 90	OCR90	3000	28	90	28	10	Paquet	
Rails 100	OCR100	3000	28	100	28	10	Paquet	
Montants 48	OCM4835/OCM4850	2400 à 6000	34/49	46,50	36/51	8 à 10	Paquet	
Montants 70	OCM7040	2500 à 6000	39	68,50	41	10	Paquet	
Montants 90	OCM9040	2500 à 6000	39	88,50	41	10	Paquet	
Montants 100	OCM1040	2500 à 6000	39	98,50	41	10	Paquet	

MISE EN ŒUVRE

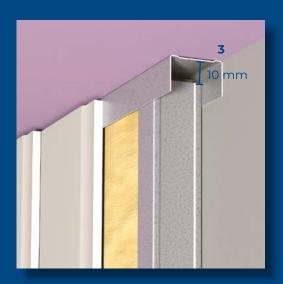
- 1. Plaque BA13 NF
- 2. Déterminer le choix de l'ossature en fonction de la hauteur de la cloison et du parement choisi.
- 3. Fixer le rail au sol et au plafond au pas de 500 mm.
- 4. Couper les montants à la hauteur -10 mm et régler l'entraxe de 40 ou 60 mm.
- 5. Poser (si besoin) bord à bord les lés d'isolant en laine minérale de verre à la longueur + 10 mm.
- 6. Visser la première plaque de plâtre NF à l'aide de vis TTPC25 au pas de 500 mm.
- 7. Visser la deuxième peau décalée d'un montant à l'aide de vis TTPC35 au pas de 250 mm. Traiter les joints avec les bandes PAI et enduit sur la dernière peau.

Choix de l'ossature et performance

En fonction de la résistance au feu recherchée, on détermine le nombre de plaque à appliquer à savoir

- Classement EI30 = 1BA13 NF STANDARD
- Classement EI60 = 2 BA13 NF STANDARD

Le type du montant permet de choisir l'épaisseur de la cloison finie et sa hauteur.


Schéma	Type et	Type	Entraxe	Hauteur maxi		Nombre et type	Résistance	N° du PV
	épaisseur (mm)	ossature	montant (cm)	[][de plaques	au feu	
	D72/48	M48-35	60	2,45	3,00*	1 BA 13	EI 30	08-A-280
· · · · · · · · · · · · · · · · · · ·	D72/48	M48-35	40	2,75	3,00*	1 BA 13	EI 30	08-A-280
VVVVIVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV	D72/50	M48-50	60	2,55	3,00*	1 BA 13	EI 30	08-A-280
	D72/50	M48-50	40	2,90	3,00*	1 BA 13	EI 30	08-A-280
	D98/48	M48-35	60	3,00	3,75	2 BA 13	EI 60	08-A-280
	D98/48	M48-35	40	3,40	4,00*	2 BA 13	EI 60	08-A-280
\\\\\\\\\\	D98/48	M48-50	60	3,10	3,85	2 BA 13	EI 60	08-A-280
	D98/48	M48-50	40	3,50	4,00*	2 BA 13	EI 60	08-A-280
	D120/70	M70-40	60	3,85	4,00*	2 BA 13	EI 60	08-A-280
	D120/70	M70-40	40	4,00*	4,00*	2 BA 13	EI 60	08-A-280
	D140/90	M90-40	60	4,00*	4,00*	2 BA 13	EI 60	08-A-280
<u> </u>	D140/90	M90-40	40	4,00*	4,00*	2 BA 13	EI 60	08-A-280
	D150/90	M100-40	60	4,00*	4,00*	2 BA 13	EI 60	08-A-280
	D150/90	M100-40	40	4,00*	4,00*	2 BA 13	El 60	08-A-280

^{*} Hauteur limitée par le PV Feu

La mise en œuvre et le choix des matériaux doivent se faire conformément au NF DTU 25.41 et aux descriptifs des procèsverbaux.

Dans le cas d'un parement double, remplir les joints entre les plaques.

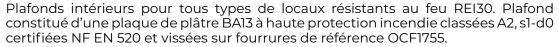
Quantitatif au m²: entraxe entre montants de 60 cm

Désignation produits	Référence	Unité	Quan El 30	titatif EI60
Plaque de plâtre	BA13 NF	m²	2.10	4.20
Rail	OCR	m	0,9	0,9
Montant	OCM	m	2,30	2,30
Cheville à frapper	CHEVILFRAP6X40	u	3	3
Vis plaque TTPC 25mm	VIS35025 l ^{ère} peau	u	25	8
Vis plaque TTPC 35mm	VIS35035 2 ^{ème} peau	u	/	25
Enduit	Au choix	kg	0,35	0,50
Bande à joint papier	BJP150	m	1,6	1,6
Isolant	Laine verre	m²	1,05	1,05

PROTECTION INCENDIE

B. Le solutions en plafonds

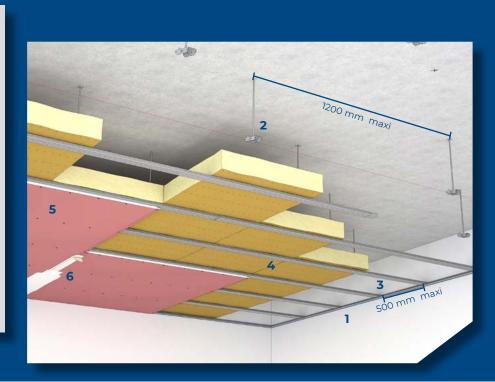
FOURRURE 17/55 FEU REI30


AVANTAGES PRODUITS

Plafond en plaque de plâtre à haute protection incendie constitué entre autre d'une fourrure spéciale de référence OCF1755 raccordé au plancher à l'aide d'une suspente.

- Ne change pas des habitudes de
- Montage avec plaque BA13 FEU

Domaine d'application et performances



Caractéristiques techniques

	Produits			Unité de Vente	
Ossatures	Désignation		Dimensions «Longueur» (mm)	Pièces/ Condit.	Condit.
	Rail pour fourrure lisse clip NF-CSTB	LISSECLIPSPP-3000NF	3000	20	Paquet
	Cornière de rive 34-23 NF-CSTB	OCSPC3423-3000NF	3000	30	Paquet
	Fourrure 17-55 pour plafond coupe feu	OCF1755-3000	3000	12	Paquet
Acessoires	Désignation	Référence	Char permanente (daN)	Pièces/ Condit.	Condit.
	Cavalier clipsable - pivotable toutes fourrures	CAVASCOPE	37	100	Boîte
	Cavalier pivot fourrures 17-47 et 17-55	CAVALIERS	40	100	Boîte
	Suspente super longue toutes fourrures - Lg 355 mm	355CONCEPT	33	50	Boîte
	Raccord fourrure 17-55 pour plafond coupe feu	RACCORDFEU	/	50	Boîte
	Cheville à frapper 6x40 mm en nylon avec clou en acier	CHEVILFRAP-6X40	/	100	Boîte

MISE EN ŒUVRE

- 1. Fixer tous les 300 mm, les cornières ou lisse clip à l'aide de chevilles à frapper 6x40.
- 2. Fixer les suspentes à entraxe de 1200 mm maximum.
- 3. Raccorder les fourrures à entraxe de 500 mm et les rabouter en quinconce à l'aide d'éclisse en laissant un jeu de 10 mm.
- 4. Poser bord à bord les lés d'isolants en laine minérale en simple ou double couche.
- 5. Simple peau: visser les plaques tous les 150 mm avec des vis TTPC et tous les 200 mm en périphérie.
- 6. Traiter les joints avec les bandes PAI et enduit sur la dernière peau (Placo, Siniat, Salsi, ...)

En fonction de la résistance au feu recherchée, on détermine le nombre de plaque BA13 NF Haute protection incendie classement A2 s1 d0 (Knauf, Siniat ou Placo) et de dimensions maximum 3000x1200 mm:

► REI 30 = 1 BA13 NF classement A2 s1 d0

Classement plafond	Support*	Ossatures type	Entraxes (en m)	Plaques (au choix)	Plénum (en mm)	Isolation (en mm)	N° du PV
REI 30	Bois, béton,	OCF1755-3000	0,50x1,20	1 KF13	≥ 200	100 à 200	EFR 15002094 A
	acier			1 Placoflam 13			
				1 Prégyflam 13			

Le conseil du pro!

La mise en œuvre et le choix des matériaux doivent se faire conformément aux descriptifs des procès-verbaux. La pose est faite selon les règles du DTU25.41 en veillant à réduire le pas des vis et en laissant un jeu de 10 mm lors du raccordement des fourrures.

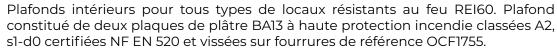
Quantitatif au m²:

Désignation produits	Référence	Unité	Quantitatif
Plaque de plâtre classement A2 s1 d0	BA13 NF	m²	1,05
Fourrure 17/55 FEU	OCF1755-3000	m	2,20
Raccord fourrure	RACCORDFEU	m	0,70
Cornière	Au choix	u	0,70
Suspentes	Au choix	u	2,10
Cheville à frapper	CHEVILFRAP6X40	m²	3,00

PROTECTION INCENDIE

B. Le solutions en plafonds

FOURRURE 17/55 FEU REI60


AVANTAGES PRODUITS

Plafond en plaque de plâtre à haute protection incendie constitué entre autre d'une fourrure spéciale de référence OCF1755 raccordé au plancher à l'aide d'une suspente.

- Ne change pas des habitudes de
- Montage avec plaque BA13 FEU

Domaine d'application et performances

Caractéristiques techniques

	naocensciques ceeminques				
	Produ	its		Unité de	e Vente
sə.	Désignation	Référence Dimensions «Longueur» (m		Pièces/ Condit.	Condit.
Ossatures	Rail pour fourrure lisse clip NF-CSTB	LISSECLIPSPP-3000NF	3000	20	Paquet
Oss	Cornière de rive 34-23 NF-CSTB	OCSPC3423-3000NF	3000	30	Paquet
	Fourrure 17-55 pour plafond coupe feu	OCF1755-3000	3000	12	Paquet
	Désignation	Référence	Char permanente (daN)	Pièces/ Condit.	Condit.
Acessoires	Cavalier clipsable - pivotable toutes fourrures	CAVASCOPE	37	100	Boîte
essc	Cavalier pivot fourrures 17-47 et 17-55	CAVALIERS	40	100	Boîte
Ac	Suspente super longue toutes fourrures - Lg 355 mm	355CONCEPT	33	50	Boîte
	Raccord fourrure 17-55 pour plafond coupe feu	RACCORDFEU	/	50	Boîte
	Cheville à frapper 6x40 mm en nylon avec clou en acier	CHEVILFRAP-6X40	/	100	Boîte

MISE EN ŒUVRE

Vue Globale

- 1. Fixer tous les 300 mm, les cornières ou lisse clip à l'aide de chevilles à frapper 6x40.
- 2. Fixer les suspentes à entraxe de 1200 mm maximum.
- 3. Raccorder les fourrures à entraxe de 500 mm et les rabouter en quinconce à l'aide d'éclisse en laissant un jeu de 10 mm.
- 4. Poser bord à bord les lés d'isolants en laine minérale en simple ou double couche.
- 5. Double peau: Visser la première peau au pas de 300 mm sur la fourrure et au pas de 400 mm en périphérie. La deuxième peau est décalée de 500 mm, le pas des vis est identique à un montage simple peau.
- 6. Traiter les joints avec les bandes PAI et enduit sur la dernière peau (Placo, Siniat, Salsi, ...)

En fonction de la résistance au feu recherchée, on détermine le nombre de plaque BA13 NF Haute protection incendie classement A2 s1 d0 (Knauf, Siniat ou Placo) et de dimensions maximum 3000x1200 mm :

REI 60 = 2 BA13 NF classement A2 s1 d0

Classement plafond	Support*	Ossatures type	Entraxes (en m)	Plaques (au choix)	Plénum (en mm)	Isolation (en mm)	N° du PV
REI 60	Bois, béton, acier	OCF1755-3000	0,50x1,20	2 KF13 ou 2 Placoflam 13	≥ 200	100 à 200	EFR 15002094 B

Le conseil du pro!

La mise en œuvre et le choix des matériaux doivent se faire conformément aux descriptifs des procès-verbaux. La pose est faite selon les règles du DTU25.41 en veillant à réduire le pas des vis et en laissant un jeu de 10 mm lors du raccordement des fourrures.

Quantitatif au m²:

Désignation produits	Référence	Unité	Quantitatif
Plaque de plâtre classement A2 s1 d0	BA13 NF	m²	1,05
Fourrure 17/55 FEU	OCF1755-3000	m	2,20
Raccord fourrure	RACCORDFEU	m	0,70
Cornière	Au choix	u	0,70
Suspentes	Au choix	u	2,10
Cheville à frapper	CHEVILFRAP6X40	m²	3,00

PROTECTION INCENDIE

B. Le solutions en plafonds

FOURRURE 17/55 FEU REI30 AVEC OMNIFIX AVANTAGES PRODUITS

Plafond en plaque de plâtre à haute protection incendie constitué entre autre d'une fourrure spéciale de référence OCF1755 raccordé au plancher à l'aide d'une suspente.

- Conforme au DTU25.41
- Largeur de cloisons ≤ 150 mm
- Ouvrage sous PV d'essai
- Hauteur de cloisons < 4 m

Plafonds intérieurs pour tous types de locaux résistants au feu REI30. Plafond constitué d'une plaque de plâtre BA13 à haute protection incendie classées A2, s1-d0 certifiées NF EN 520 et vissées sur fourrures de référence OCF1755.

Caractéristiques techniques

	Proc	duits		Unité de	e Vente
nres	Désignation		Dimensions «Longueur» (mm)	Pièces/ Condit.	Condit.
ssat	Profil longue portée OMNIFIX H100 mm ep 10/10	OMNIFIX10010	6000	4	Paquet
0	Fourrure 17-55 pour plafond coupe feu	OCF1755-3000	3000	12	Paquet

	Désignation	Référence	Char permanente (daN)	Pièces/ Condit.	Condit.
ires	Fixation profil longue portée haute et basse OMNIFIX	OMNIFIX	/	50	Boîte
ossa	Attache de raccordement acoustique - charge 45-75 kg	SUPPORTDBH75	75	20	Boîte
Ac	Attache de raccordement acoustique - charge 75-110 kg	SUPPORTDBH110	110	20	Boîte
	Eclisse de raccordement pour OMNIFIX 100	ECLISSE100	/	20	Boîte
	Sabot support en rive de profil primaire	SABOT10045	/	10	Boîte

MISE EN ŒUVRE

Vue Globale

Ossature primaire:

- 1. Fixer les suspentes à entraxe de 3000 mm maximum suivant calcul de charge OMNIFIX.
- 2. Fixer less abots de raccordement mural espacés de 1200 mm.
- 3. Abouter les ossatures OMNIFIX avec 2 éclisses.
- 4. Emboîter les ossatures primaires OMNIFIX dans les sabots en réservant un ieu de 10mm aux extrémités et verrouiller à l'aide de la goupille.
- 5. Raccorder les attaches OMNIFIX sur les tiges filetées de 6 mm.
- 6. Visser les profilés anti devers (OCF1755-3000) à l'aide de vis THPF (VIS42016).

Ossature secondaire:

Se reporter à la page « Fourrure 17-55 feu »

En fonction de la résistance au feu recherchée, on détermine le nombre de plaque BA13 NF Haute protection incendie classement A2 s1 d0 (Knauf ou Placo) et de dimensions maximum 3000x1200mm :

▶ REI 30 = 1 BA13 NF classement A2 s1 d0

Classement plafond	Support*	Ossatures type	Entraxes (en m)	Plaques (au choix)	Plénum (en mm)	Isolation (en mm)	N° du PV
REI 30	Bois, béton, acier	OCF1755-3000 + Omnifix	0,50x1,20	1 KF13 ou 1 Placoflam 13	≥ 380	100 à 200	EFR-16-2368 A

Le conseil du pro!

La mise en œuvre et le choix des matériaux doivent se faire conformément aux descriptifs des procès-verbaux. La pose est faite selon les règles du DTU25.41 en veillant à réduire le pas des vis et en laissant un jeu de 10 mm lors du raccordement des fourrures.

Désignation produits	Référence	Unité	Quantitatif
Omnifix	OMNIFIX10010	m	1,05
Eclisse	ECLISSE100	u	0,18
Sabot	SABOT10045	u	0,18
Fourrure 17/55 FEU	OCF1755-3000 (barre anti-devers)	m	0,70
	1,75 m	u	0,60
Omnifix (distance	2,10 m	u	0,50
entre 2 suspentes	2,80 m	u	0,40
	3,00 m	u	0,38
Plaque de plâtre	BA13 (pour 1 peau)	m²	1,05
Fourrure 17/55 FEU	OCF1755-3000	m	2,20
Raccord fourrure	RACCORDFEU	u	0,70
Cornière	Au choix	u	0,70
Suspentes	Au choix	u	2,10
Cheville à frapper	CHEVILFRAP6X40	u	3,00

PROTECTION INCENDIE

B. Le solutions en plafonds

FOURRURE 17/55 FEU REI60 AVEC OMNIFIX A AVANTAGES PRODUITS

Plafond en plaque de plâtre à haute protection incendie constitué entre autre d'une fourrure spéciale de référence OCF1755 raccordé au plancher à l'aide d'une suspente.

- Conforme au DTU25.41
- Largeur de cloisons ≤ 150 mm
- Ouvrage sous PV d'essai
- Hauteur de cloisons < 4 m

Plafonds intérieurs pour tous types de locaux résistants au feu REI60. Plafond constitué d'une plaque de plâtre BA13 à haute protection incendie classées A2, s1-d0 certifiées NF EN 520 et vissées sur fourrures de référence OCF1755.

Caractéristiques techniques

	Pro	Unité de	e Vente		
ures	Désignation		Dimensions «Longueur» (mm)	Pièces/ Condit.	Condit.
ssat	Profil longue portée OMNIFIX H100 mm ep 10/10	OMNIFIX10010	6000	4	Paquet
0	Fourrure 17-55 pour plafond coupe feu	OCF1755-3000	3000	12	Paquet

	Désignation	Référence	Char permanente (daN)	Pièces/ Condit.	Condit.
ires	Fixation profil longue portée haute et basse OMNIFIX	OMNIFIX	/	50	Boîte
ossa	Attache de raccordement acoustique - charge 45-75 kg	SUPPORTDBH75	75	20	Boîte
Ac	Attache de raccordement acoustique - charge 75-110 kg	SUPPORTDBH110	110	20	Boîte
	Eclisse de raccordement pour OMNIFIX 100	ECLISSE100	/	20	Boîte
	Sabot support en rive de profil primaire	SABOT10045	/	10	Boîte

MISE EN ŒUVRE

Vue Globale

Ossature primaire:

- 1. Fixer les suspentes à entraxe de 3000 mm maximum suivant calcul de charge OMNIFIX.
- 2. Fixer less abots de raccordement mural espacés de 1200 mm.
- 3. Abouter les ossatures OMNIFIX avec 2 éclisses.
- 4. Emboîter les ossatures primaires OMNIFIX dans les sabots en réservant un ieu de 10mm aux extrémités et verrouiller à l'aide de la goupille.
- 5. Raccorder les attaches OMNIFIX sur les tiges filetées de 6 mm.
- 6. Visser les profilés anti devers (OCF1755-3000) à l'aide de vis THPF (VIS42016).

Ossature secondaire:

Se reporter à la page « Fourrure 17-55 feu »

En fonction de la résistance au feu recherchée, on détermine le nombre de plaque BA13 NF Haute protection incendie classement A2 s1 d0 (Knauf ou Placo) et de dimensions maximum 3000x1200mm :

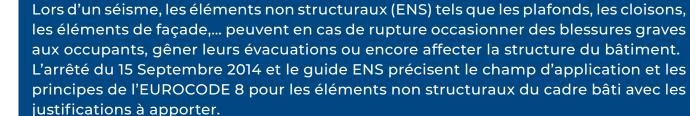
▶ REI 60 = 2 BA13 NF classement A2 s1 d0

Classement plafond	Support*	Ossatures type	Entraxes (en m)	Plaques (au choix)	Plénum (en mm)	Isolation (en mm)	N° du PV
REI 60	Bois, béton, acier	OCF1755-3000 + Omnifix	0,50x1,20	2 KF13 ou 2 Placoflam 13	≥ 380	100 à 200	EFR-16-2368 B

Le conseil du pro!

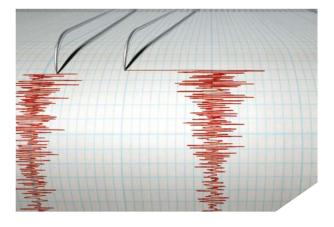
La mise en œuvre et le choix des matériaux doivent se faire conformément aux descriptifs des procès-verbaux. La pose est faite selon les règles du DTU25.41 en veillant à réduire le pas des vis et en laissant un jeu de 10 mm lors du raccordement des fourrures.

Quantitatii au iii .			
Désignation produits	Référence	Unité	Quantitatif
Omnifix	OMNIFIX10010	m	1,05
Eclisse	ECLISSE100	u	0,18
Sabot	SABOT10045	u	0,18
Fourrure 17/55 FEU	OCF1755-3000 (barre anti-devers)	m	0,70
	1,75 m	u	0,60
Omnifix (distance entre 2 suspentes	2,10 m	u	0,50
	2,80 m	u	0,40
	3,00 m	u	0,38
Plaque de plâtre	BA13 (pour 1 peau)	m²	1,05
Fourrure 17/55 FEU	OCF1755-3000	m	2,20
Raccord fourrure	RACCORDFEU	u	0,70
Cornière	Au choix	u	0,70
Suspentes	Au choix	u	2,10
Cheville à frapper	CHEVILFRAP6X40	u	3,00



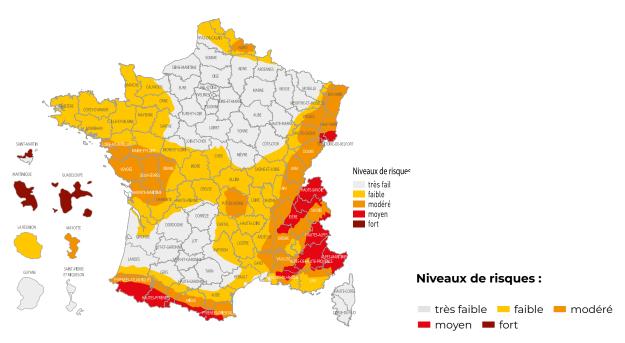
PROTECTION SISMIQUE

Introduction



Résistance aux séismes

L'arrêté du 15 Septembre 2014 et le guide ENS dispensent de justifications parasismiques :


- Les cloisons et contre-cloisons de masse surfacique <25 kg/m² et de hauteur < 3,5 m.
- •Les plafonds suspendus sur ossatures métalliques de masse surfacique <25 kg/m² et de hauteur < 3,5 m

La réglementation parasismique : les zones concernées

Lorsque la protection vis-à-vis du risque sismique est exigée, la conception du plafond suspendu doit être étudiée de telle sorte que la stabilité reste assurée dans l'hypothèse d'un déplacement relatif du plafond par rapport au gros œuvre et que, dans l'éventualité de la chute d'un ou plusieurs éléments, celle-ci n'entraîne pas celle des éléments voisins.

Le territoire national est divisé au niveau cantonal en cinq zones de sismicité croissante en fonction de la probabilité d'occurence des séismes (articles R563-1 à R53-8 du Code de l'Environnement) :

Ouvrages Zone	Catégorie d'importance					
sismique	I	II	III	IV		
Zone 1	Non visé	Non visé	Non visé	Non visé		
Zone 2	Non visé	Non visé	Visé	Visé		
Zone 3	Non visé	Visé	Visé	Visé		
Zone 4	Non visé	Visé	Visé	Visé		
Zone 5	Non visé	Visé	Visé	Visé		

Catégories	Descriptions			
I	Bâtiments dans lesquels il n'y a aucune activité humaine nécessitant un séjour de longue duré			
II	 Habitations individuelles Établissements recevant du public (ERP) de catégories 4 et 5 Habitations collectives de hauteur inférieure à 28 m Bureaux et établissements commerciaux non ERP.h ≤ 28 m, maximum de 300 personnes Bâtiments industriels pouvant accueillir au plus 300 personnes Parcs de stationnement ouverts au public 			
III	 ERP de catégories 1, 2 et 3 Habitations collectives et bureaux, h > 28 m Bâtiments pouvant accueillir plus de 300 personnes Établissements sanitaires et sociaux Centres de production collective d'énergie Établissements scolaires 			
IV	 Bâtiments indispensables à la sécurité civile, la défense nationale et le maintien de l'ordre public Bâtiments assurant le maintien des communications, la production et le stockage d'eau potable, la distribution publique de l'énergie Bâtiments assurant le contrôle de la sécurité aérienne Établissements de santé nécessaires à la gestion de crise Centres météorologiques 			

PROTECTION SISMIQUE

A. Les solutions en murs et plafonds

RAILS, MONTANS ET FOURRURES

Description

Gamme de montants, rails, fourrures et accessoires permettant une mise en œuvre adaptée afin de répondre aux contraintes parasismiques.

A B C C

Domaine d'application

Solution en cloison, contre cloison et plafond permettant de répondre à la règlementation pour les ouvrages devant justifier des dispositions permettant de respecter la règlementation parasismique applicable aux éléments non structuraux (ENS). Les systèmes s'appuient sur des essais et calculs réalisés au CSTB (RAPPORT D'ESSAIS N° MRF 13 26048849) en partenariat avec l'UMPI-FFB (voir fiche pratique UMPI-FFB d' Avril 2016) constitués :

		Produits					Unité d	e Vente
Désignation		Référence	Longueur (mm)	А	В	С	Pièces/ Condit.	Condit.
Rails	Contre-cloison/cloison/plafond	OCR48/ OCR62/ OCR70	3000	28 à 32	48 à 70	28 à 32	10	Paquet
Montant 48	Contre-cloison/cloison/plafond	OCM4835/OCM4850	2400 à 6000	34 à 49	46,50	36 à 51	8 à 10	Paquet
Montant 48 Montant 62	Contre-cloison/cloison/plafond	OCM6235	2500 à 4000	34	61,50	36	10	Paquet
Montant 70	Contre-cloison/cloison/plafond	OCM7035/OCM7040/OCM7050	2500 à 6000	34 à 49	68,50	36 à 51	8 à 10	Paquet
Fourrures	Plafond	OCF1747/OCF1845	2400 à 5300	17 à 18	45 à 47	17 à 18	10	Paquet
Cornière	Plafond	OCSPC3423-3000NF	3000	34	23	/	30	Paquet

	Désignation		Longueur (mm)	Largeur	Pièces/ Condit.	Condit.	Condit/Palette	
3	Feuillard de renfort Contre-cloison/cloison	APRMC	30000	110	1	Rouleaux	36	

MISE EN ŒUVRE

Vue Globale

- 1. Pose des ossatures selon les règles du DTU 25.41 et fixation des rails au pas de 600 mm (voir tableau résistance au cisaillement).
- 2. Pose d'un feuillard métallique au droit des joints transversaux de la dernière peau.
- 3. Pose de la première peau de plaque de plâtre NF à l'aide de vis TTPC.
- 4. Pose de la deuxième peau décalée d'un montant et vissage sur le feuillard au pas de 300 mm.

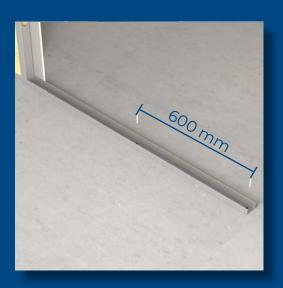
Performances

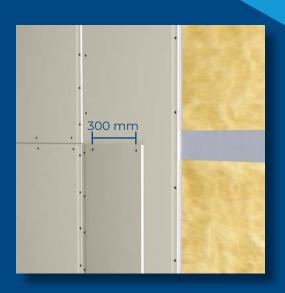
Cloisons et contre-cloisons non chargées et de masse surfacique <60 kg/m²;

• Si les fixations des rails hauts et bas sont disposées tous les 60 cm, vérifier auprès du fabricant la résistance au cisaillement des ancrages en fonction du support suivant le tableau ci-dessous :

Hauteur de la cloison ou de la	Masse surfacique de la cloison ou de la contre-cloison	40 kg/m²	50 kg/m²	60 kg/m²
contre-cloison	Rappel de l'action sismique Fa (daN/m²)	44,35	55,44	66,53
3 m		95,8	119,8	143,
4 m	Résistance minimale au cisaillement de chaque ancrage pour un entraxe 60 cm (daN par ancrage)	127,7	159,7	191,6
5 m		159,7	199,6	239,5
6 m		191,6	239,5	287,4
6,85 m		218,7	273,4	328,1

Plafond plan sans charge suspendue et de masse surfacique isolant compris < 35kg/m².

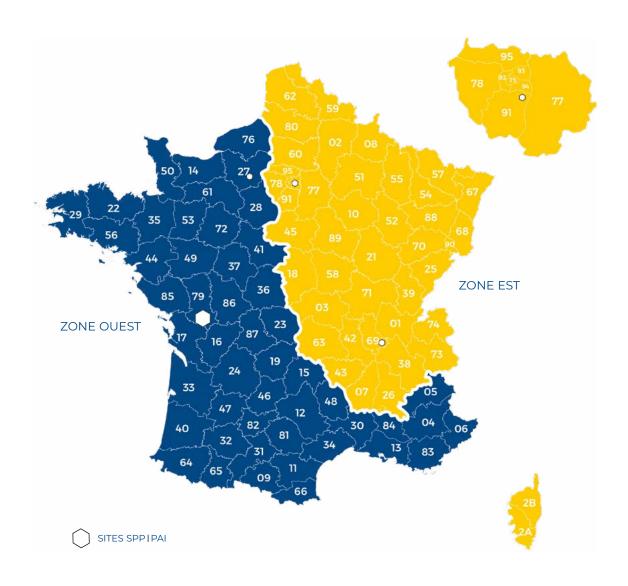

- Réalisé avec un minimum de 2 suspentes par ligne d'ossatures et dont les fixations sont au moins aussi résistantes que le couple profilé et suspente.
- Avec les limitations suivantes :


Plafond avec joint de fractionnement	Largeur maximale 2,2 m si entraxe de vissage des plaques sur la cornière de 30 cm (largeur portée à 45 m si entraxe de vissage ramené à 15 cm).		
Plafond sans joint de fractionnement	Plus grande dimension ≤ 25 m (conformément au NF DTU 25.41)		

Le conseil du pro!

Pour une meilleure performance, décaler la pose des plaques et des feuillards sur chaque face de la cloison.

Pour la fixation du rail, si vous n'avez pas d'ancrage qui résiste à la charge vous pouvez réduire la portée.



Un service commercial

à votre service

RENSEIGNEMENT TECHNIQUE COMMERCIAL 05 49 25 90 76 adv@psigroupe.com

